

Overview

- Objective:
 - Achieve maximum energy savings from your ESPCs
- Steps: Agency initiates discussion w/ESCO
 - Ensure contracts meet minimum purchasing requirements
 - ENERGY STAR® and FEMP-Designated product specifications
 - Achieve deeper savings through underutilized technology
 - FEMP Technology Deployment Matrix
 - Incorporate renewables
 - · Renewable energy screenings
 - · Power purchase agreements

Milestones in the ESPC Process

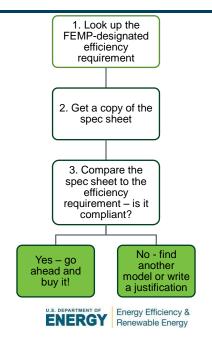
	Acquisition Planning	Phase 1	
	ESCO Selection	2	
	Preliminary Assessment	2	
	Notice of Intent to Award	2	
	Request for Proposal	3	
	Investment-Grade Audit	3	
	Proposal	3	
	Task Order Award	3	
	Final Design and Construction	4	
	Project Acceptance	4	
	Post-Acceptance Performance Period	5	
D-3		ENERGY Energy Efficience Renewable Energy	

Requirements to Purchase ENERGY STAR and FEMP-Designated Products

Agencies are required to purchase ENERGY STAR and FEMP- Designated Products

- Applies to ESPCs and all purchases of energy-consuming equipment
- Legislation and Regulations:
 - Energy Policy Act (EPAct) of 2005
 - FAR 23.203 204
 - FAR 52.223-15 included in ESPC IDIQ by reference

D-5


Summary of Requirements

- Agencies must purchase ENERGY STAR and FEMPdesignated products
 - ESCOs are aware, but agencies should ensure compliance
- Applies to all products covered by the two programs (~ 90)
- Exemptions (with written determination by agency head) only when there is no ENERGY STAR or FEMP-designated model that:
 - Meets the agency's functional requirements
 - Is life-cycle cost-effective for application

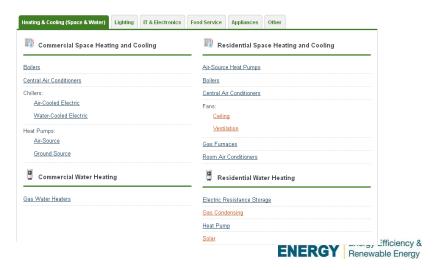
Ensuring Compliance

- Make sure to discuss the requirements with the ESCO early in ESPC process
- Check the FEMP website to see which product types are covered
- Review spec sheets in ESCO's proposal to check whether specified models meet efficiency requirements

D-7

What To Do

- Look up the FEMPdesignated efficiency requirement
- Get a copy of the spec sheet
- Follow the checklist


Checklist

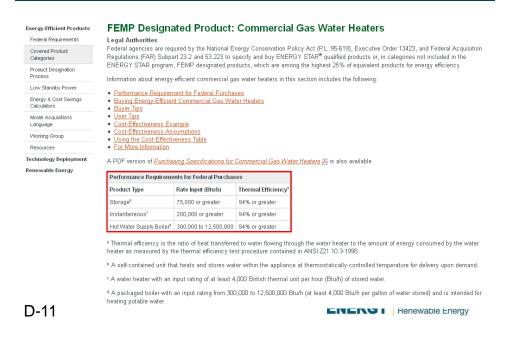
- a) Is it the right product type? (EX: water heater)
 - -Commercial?
 - -Gas?
 - –Storage, instantaneous, or hot water supply boiler?
- b) Does it meet or exceed the FEMP-designated efficiency requirement?

ENERGY Energy Efficiency & Renewable Energy

Look up the FEMP-Designated Efficiency Requirement

· Visit www.FEMP.energy.gov/coveredproducts

D-9


Is the product category covered?

· Select the product type

If it appears on this website, it's covered by either FEMP or ENERGY STAR

ating & Cooling (Space & Water) Lighting IT & Electronics Food Service Appliances Other Commercial Space Heating and Cooling Residential Space Heating and Cooling Air-Source Heat Pumps Central Air Conditioners Boilers Central Air Conditioners Air-Cooled Electric Water-Cooled Electric Ventilation Air-Source Gas Furnaces Ground Source Room Air Conditioners Commercial Water Heating Residential Water Heating Heat Pump Whole-Home Tankless (Instantaneous) Trellewable Lifelgy

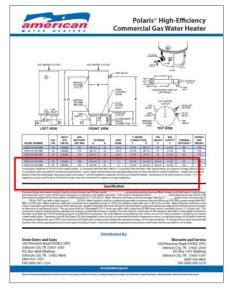
Find the Efficiency Requirements Table

Get a copy of the spec sheet

- How? Spec sheets should be included as part of the contractors proposal
- This example was downloaded from a manufacturer website and is not a product endorsement: http://www.americanwater
 heaternews.com/media/lit/

polaris/Polaris Commercial

Spec sheet.PDF



ENERGY Energy Efficiency & Renewable Energy

Compare spec sheet to FEMP-designated efficiency requirement

FEMP Designated Product: Commercial Gas Water Heaters

Performance Requirements for Federal Purchases				
Product Type	Rate Input (Btu/h)	Thermal Efficiency ^a		
Storage ^b	75,000 or greater	94% or greater		
Instantaneous	200,000 or greater	94% or greater		
Hot Water Supply Boiler	300,000 to 12,500,000	94% or greater		

D-13

Achieving Deeper Savings:
Advanced and Underutilized Technology

Benefits of Including Advanced EE and RE Technologies in ESPCs

- Financing of up-front costs
- Better access to rebates and tax incentives
- Performance guarantees
- A partner (the ESCO) who is also invested in the success of the technology
- FEMP assistance and resources, including experts from DOE national labs

D-15

FEMP Technology Deployment Web Pages

- Unbiased information about energy- and water-efficient technologies that:
 - Have a high potential for energy savings
 - Offer cost benefits
 - Are commercially available for deployment

Navigation to the Technology Deployment:

FEMP Home » Products & Technologies » Technology

Deployment » Efficient Technologies and Products for Federal Facilities

ENERGY Energy Efficiency & Renewable Energy

Categories of Technologies

- Heating and Cooling
- Lighting
- Plug Loads: Appliances and Electronics
- Water
- Windows and Building Envelope

D-17

Examples of Promising Technologies

Technology	Category		
Spectrally Enhanced Lighting	Lighting		
Condensing Boilers	Heating & Cooling		
Combined Heat and Power	Power Generation		
Super T8 Lighting	Lighting		
Low Ambient / Task Lighting	Lighting		
Commercial Ground-source Heat Pumps	Heating & Cooling		
High R-Value Windows	Building Envelope		
LED / Solid State Lighting - Interior	Lighting		
LED / Solid State Lighting - Exterior	Lighting		

ENERGY Energy Efficiency & Renewable Energy

Use FEMP's Technology Deployment Information During ESPC Development

- As part of acquisition planning, agencies can use FEMP's Technology Deployment web pages to review technologies and opportunities
 - Ask your PF or FFS early in project development
- FEMP can schedule a meeting with the agency to review technologies
- Bringing the ESCO into the discussion can speed incorporation

D-19

Promising/Underutilized Technologies in ESPCs

- · Outdoor LED Lighting: Army, GSA, DOE, USCG
- · Induction Lighting: Army, GSA, USCG
- Roof Integrated PV: GSA
- EE Fume Hoods: DOE (LANL, ORNL, NETL), USFS
- Variable Refrigerant Volume (VRV) A/C: USCG, USAF
- LED Runway Lights: USCG, FAA
- Turbocor Chillers: USDA, GSA, USCG, NASA
- Aerosol Duct Sealing: Arch. of Capitol (U.S. House of Reps.)
- Biomass Cogen/Boilers: NETL, NREL, ORNL, BoP, DOE
- Bay Source Heat Pumps: FDA
- Cool/Green Roof: DOE, GSA, USGS, USCG
- Wind power: USFS, GSA, DOE

Keys to Successful Deployment

- Agency initiative and motivation is important
- Technologies may be identified by agency or ESCO
 - Agency suggestion increases likelihood of incorporation
- Projects require a mix of motivation and tolerance among project partners
 - Each partner must be motivated to incorporate the technology – or at least tolerant of it
- Perceived risks need to be identified and managed
 - For instance, how should M&V be handled for technology that's only been commercialized for 5-10 years?

D-21

More Keys to Successful Deployment

- Demonstrations during the investment-grade audit can help reduce risks
- Use technology experts from the national labs and private sector to educate stakeholders
- Financial incentives can help offset first costs
 - e.g., many utilities offer "custom" programs that permit incentives for non-standard technologies

Incorporating Renewable Energy

Renewable Energy (RE) Screenings

- Screenings offered by FEMP: First-come, first-served (and depending on available funds)
- NREL completes high-level screening and report evaluating site's potential resources for RE:
 - Wind
 - Biomass/Alt. methane fuels
 - Geothermal heat pumps
 - Solar PV, solar thermal, solar water heating, solar vent preheat

Obtaining a Renewable Energy Screening

- As part of acquisition planning, agency enters site data on FEMP-provided form
- · Agency submits completed form to NREL
- NREL completes the screening and returns the report in about four weeks

D-25

Screening Shows Potential Cost Savings and Simple Payback for Renewable Technologies

Technology	System Size	Units	Initial Cost	Annual Cost Savings	Annual Operating Cost	Simple Payback (years)
Photovoltaics	500	nameplate capacity (kW)	\$2,761,250	\$63,112	\$3,616	46.4
Solar Vent Preheat	5,000	area (sq feet)	\$184,337	\$19,762	\$0	9.3
Solar Water Heating	10,000	panel area (sq feet)	\$979,227	\$67,030	\$4,896	15.8
Daylighting	3.5%	skylight/floor area ratio (%)	\$531,494	\$18,379	\$0	28.9
Solar Thermal	10,000	collector area (sq feet)	\$819,060	\$48,050	\$1,939	17.8
Wind Power	500	capacity (kW)	\$1,532,592	\$44,620	\$3,950	37.7

ENERGY Energy Efficiency & Renewable Energy

Example Screening Report – Analysis provides detailed results for each technology

PV rating (kW)	500
PV Size (ft²)	32,024
PV Initial Cost (\$)	2,805,000
PV Rebate (\$)	43,750
PV Production Incentive (\$/year)	0
PV State Tax Credit (\$)	0
PV Federal Tax Credit (\$)	0
PV Initial Cost w/incentives (\$)	2,761,250
Net Metering up to (kW)	0
PV Annual Energy Delivery (kWh/year)	602,712
Capacity Factor (%)	17.9%
PV Annual Utility Cost Savings (\$)	63,112
PV Annual O&M Cost (\$/year)	3,616
PV Payback Period (years)	46.4

D-27

Power Purchase Agreements (PPAs)

- PPAs allow agencies to fund on-site RE projects with no up-front capital costs
 - Developer installs and owns system on agency property, taking tax benefits
 - Agency purchases the generated power, paying for the system over the life of the contract
- · A PPA may be included as an ECM in an ESPC project
 - Check with FEMP, an FFS, or your PF about current rules and whether a PPA is an option at your site

Summary: Great Reasons to Consider Advanced EE and RE Technology for Your ESPC

- · Requirements for energy-efficient product procurement
- ESPCs are a proven vehicle for deployment of advanced EE and RE
 - Risk management
 - ESCOs invested in project success
- FEMP provides support every step of the way

Agency Motivation Makes it Happen!

D-29

FEMP Assistance and Resources

- FEMP Web site energy.gov/eere/femp
- FEMP → Products & Technologies →
 - ullet ightarrow Energy-Efficient Products
 - → Technology Deployment
 - → Renewable Energy
- FPE, PF, national lab technology experts

Next: Break ►

After Break

Phase 2 – ESCO Selection and Preliminary Assessmet

